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Abstract

In this work, the similarity equation describing the thermal boundary layers of laminar narrow axisymmetric jets is derived based

on boundary layer assumptions. The equation is solved exactly. Some properties of the thermal jet are discussed. By introducing

new-defined non-dimensional coordinates, the similarity solution results in a ‘‘universal’’ format. The results can also be applied in

the boundary layer problem of species diffusion.

� 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Schlichting (White, 1991; Schlichting and Gersten,
2000) solved the narrow axisymmetric jet problem based

on boundary layer assumptions by introducing a new

similarity variable. In applications, it is possible that the

incoming jet flow has a different temperature from that

of the quiescent fluid, which is the ‘‘free hot jet’’ prob-

lem. The thermal boundary layer solution of a narrow

plane jet was given by Schlichting and Gersten (2000).

However, the thermal boundary layer of a laminar
narrow axisymmetric jet was not discussed by Schlich-

ting. In the book of Pai (1954), which is a book spe-

cialized for jets, the thermal boundary layer was also not

included. Kanury (1975) described a thermal boundary

layer solution for a cylindrical jet in his book on com-

bustion. In his work, he assumed that the Prandtl

number of the fluid is one. Therefore, his thermal

boundary layer is similar to a momentum boundary
layer. Fujii (1963) presented the solution of a buoyancy

jet for a point heat source. The thermal boundary layer

of a free circular jet, however, is different from that of a

buoyancy jet. The analytical solution of a buoyancy jet

exists only when the Prandtl number Pr ¼ 2 and Pr ¼ 1.

In the current work, the similarity equation of the

thermal boundary layer for a narrow axisymmetric jet is

derived and solved exactly. The derivation and results
can also be applied in mass transfer problem of species

diffusion by changing thermal diffusivity into species

diffusivity and Prandtl number into Schmidt number for

narrow axisymmetric jets.

2. Mathematical formulation

The describing equation of a narrow axisymmetric

jet, neglecting the body force, based on boundary layer

assumptions can be shown (White, 1991) to be
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subject to the boundary conditions

vðx; 0Þ ¼ 0;
ou
or

ðx; 0Þ ¼ 0 and uðx;1Þ ¼ 0 ð3Þ

It is assumed that the inflow fluid temperature is dif-

ferent from the temperature, T0, of quiescent fluid. Thus,

by neglecting the dissipation term, the energy equation

becomes
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with boundary conditions

oT
or

ðx; 0Þ ¼ 0 and T ðx;1Þ ¼ T0 ð5Þ

Defining a new temperature as bTT ¼ T � T0 yields the

boundary conditions

obTT
or

ðx; 0Þ ¼ 0 and bTT ðx;1Þ ¼ 0 ð6Þ

The energy equation will remain the same by chang-

ing T into bTT . The following derivation employs the same

similarity variables employed by White (1991). Since the
analytical solution of the momentum boundary layer

has been given, attention will be paid to the thermal

boundary layer. The similarity variable is defined as

g ¼ r=x. Then we can define u ¼ mF 0=r and obtain v ¼
ðm=rÞðgF 0 � F Þ. The similarity equation of the momen-

tum boundary layer becomes (White, 1991)
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The analytical solution of Eq. (7) is

F ðgÞ ¼ ðCgÞ2

1 þ ðCg=2Þ2
ð8Þ

where C ¼ 3J=16pqm2ð Þ1=2
and J is the given momentum

flux.

Using the same similarity variable, we can definebTT ¼ mðhðgÞ=rÞ. The energy equation simplifies to
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subject to boundary conditions

h0ð0Þ ¼ 0 and hð1Þ ¼ 0 ð10Þ

Eq. (9) combining with boundary conditions can be in-

tegrated as following:

hðgÞ ¼ Ae
�
R g

0
ððPr F ð1Þ�1Þ=1Þ d1 ð11Þ

The coefficient A can be determined by the enthalpy

flux in the cross-section for any x. We define the enth-

alpy flux as

H ¼
Z 1

0

qcp½T ðx; rÞ � T0	uðx; rÞ2prdr ð12Þ

Plugging Eq. (8) into Eq. (11) yields

hðgÞ ¼ Ag

1 þ Cg=2ð Þ2
h i2 Pr ð13Þ

It is known (Schlichting and Gersten, 2000) that, for a

laminar narrow plane jet, the relevant hðgÞ equals ðf 0ÞPr.
From Eq. (13), it is seen that this is not the case for a

narrow axisymmetric jet. Substituting Eq. (13) into Eq.

(12) yields

H ¼ 8pAqcpm2

2Pr þ 1
ð14Þ

From Eq. (14), the coefficient A can be determined as

A ¼ Hð2Pr þ 1Þ
8pqcpm2

¼ AðPrÞ ð15Þ

Nomenclature

cp specific heat per unit mass

di incoming flow jet diameter
r radial coordinate

u axial fluid velocity

ui incoming flow jet velocity

v radial velocity

x axial coordinate

A integration constant of thermal boundary

layer solution

B coefficient of thermal jet radius
C integration constant of momentum boundary

layer solution

F dimensionless free stream function

F 0 first derivative of F

F 00 second derivative of F

H total enthalpy flux

J total momentum flux

Pr Prandtl number

R non-dimensional radial coordinate
Rei incoming flow Reynolds number

T fluid temperature

T0 quiescent fluid temperature

Ti incoming jet fluid temperature

Tn non-dimensional fluid temperaturebTT residual temperature

X non-dimensional axial coordinate

Greeks

a thermal diffusivity

g similarity variable
l dynamic viscosity

m kinematic viscosity

q fluid density

h similarity temperature function
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The temperature bTT becomes

bTT ¼ Hð2Pr þ 1Þ
8pqcpmx

1

�
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4
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The maximum temperature at the central line of the jet

will become

bTTmax ¼
Hð2Pr þ 1Þ

8pcplx
ð17Þ

The radius of the axisymmetric thermal jet can be de-

fined as

rjet ¼ rjT̂T=T̂Tmax¼0:01 ð18Þ

Then plugging Eqs. (16) and (17) into Eq. (18) yields

rjet ¼
2x
C

1001=2 Pr
�

� 1
�
¼ BðPrÞ 2x

C
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It is interesting that the radius of the thermal jet is

proportional to the distance from the jet exit. The re-

lationship of BðPrÞ to Prandtl number is depicted in Fig.

1. It is found from Fig. 1 that, at the same x location, the

thermal jet radius will decrease with the increase of
Prandtl number. If we denote the diameter of the long

circular slot di, fluid velocity ui, fluid temperature Ti as

Kanury (1975), then we obtain

J ¼ q
pd2

i

4
u2

i and H ¼ qcp
pd2

i

4
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A non-dimensional temperature can be defined as

Tn ¼ T � T0

Ti � T0

¼
bTT

Ti � T0

Therefore,

Tn ¼ 2Pr þ 1
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where Rei ¼ diui=m is the incoming flow Reynolds num-

ber. If we assume a unit Prandtl number, Eq. (20) be-

comes

Tn ¼ 3

32

di Rei

x
1

�
þ C2g2

4

��2

ð21Þ

which is the solution of the thermal boundary layer for a

laminar cylindrical jet on the basis of analogy to Sch-

lichting’s momentum boundary layer (Kanury, 1975).

From the above derivation, it is known that C ¼
ffiffi
3

p

8
Rei,

and plugging C and g yields the equation of the non-
dimensional temperature

Tn ¼ 2Pr þ 1
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After defining non-dimensional coordinates X ¼ x=

diRei and R ¼ r=di, we obtain

Tn ¼ 2Pr þ 1

32
X�1 1

�
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X�2R2

��2 Pr

ð23Þ

The isothermal curves for Prandtl number of 0.7 are

shown in Fig. 2. Because of the influence of Reynolds

number, the X coordinate is greatly shrunk. The con-
stant non-dimensional temperature curves for different

Prandtl numbers are shown in Fig. 3. It is seen from the

plot that the peak value of the non-dimensional R co-

ordinate varies with Prandtl number. Rpeak reduces with

increasing of Prandtl number when Pr6 Prc, where Prc is

a critical Prandtl number of the fluid, while it increases

with increasing of Prandtl number when PrP Prc. For

this case, say Tn ¼ 0:4, the minimum Rpeak happens at
Prc � 0:8. The relationship between Rpeak and Pr is

Fig. 1. The relationship of BðPrÞ to Prandtl number. Fig. 2. Non-dimensional isothermal curves for Pr ¼ 0:7.
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shown in Fig. 4. Two non-dimensional temperatures are

depicted in it. It is found that the above-mentioned re-

lation is explained by the curves. The minimum Rpeak

happens for critical Prandtl number close to one.

3. Conclusion

In the current work, the thermal boundary layer of a

laminar narrow axisymmetric jet is analyzed and the

similarity equation describing the problem is derived

and solved exactly. Other useful quantities relevant to

thermal axisymmetric jets are also discussed. By defining

relevant non-dimensional coordinates, the similarity
solution is given in a ‘‘universal’’ format.
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Fig. 3. Plots of constant non-dimensional temperature for different

Prandtl numbers.

Fig. 4. The relationship between Rpeak and Prandtl number for different

non-dimensional temperatures.
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